Periplasmic vestibule plays an important role for solute recruitment, selectivity, and gating in the Rh/Amt/MEP superfamily.

نویسندگان

  • Ugur Akgun
  • Shahram Khademi
چکیده

AmtB, a member of the Rh/Amt/MEP superfamily, is responsible for ammonia transport in Escherichia coli. The ammonia pathway in AmtB consists of a narrow hydrophobic lumen in between hydrophilic periplasmic and cytoplasmic vestibules. A series of molecular dynamics simulations (greater than 0.4 μs in total) were performed to determine the mechanism of solute recruitments and selectivity by the periplasmic vestibule. The results show that the periplasmic vestibule plays a crucial role in solute selectivity, and its solute preferences follow the order of NH4(+) > NH3 > CO2. Based on our results, NH4(+) recruitment is initiated by its interaction with either E70 or E225, highly conserved residues located at the entrance of the vestibule. Subsequently, the backbone carbonyl groups at the periplasmic vestibule direct NH4(+) to the conserved aromatic cage at the bottom of the vestibule (known as the Am1 site). The umbrella sampling simulations suggest that the conserved residue D160 is not directly involved in the ammonia conduction; rather its main function is to keep the structure of periplasmic vestibule intact. The MD simulations also revealed that two partially stacked phenyl rings of F107 and F215, separating the periplasmic vestibule from the hydrophobic lumen, flip open and closed simultaneously with a frequency of approximately 10(8) flipping events per second. These results show how the periplasmic vestibule selectively recruits NH4(+) to the Am1 site, and also that the synchronized flipping of two phenyl rings potentially facilitates the solute transition from the periplasmic vestibule to the hydrophobic lumen in the Rh/Amt/MEP superfamily.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shahram Khademi and Robert M . Stroud Mechanism of Ammonia Gas Conduction

[PDF] [Full Text] [Abstract] , June 1, 2009; 212 (11): 1716-1730. J Exp Biol Dirk Weihrauch, Michael P. Wilkie and Patrick J. Walsh Ammonia and urea transporters in gills of fish and aquatic crustaceans [PDF] [Full Text] [Abstract] 2010; 192 (1): 94-103. J. Bacteriol. David R. Scott, Elizabeth A. Marcus, Yi Wen, Siddarth Singh, Jing Feng and George Sachs Helicobacter pylori , Is Necessary f...

متن کامل

Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A.

The first structure of an ammonia channel from the Amt/MEP/Rh protein superfamily, determined to 1.35 angstrom resolution, shows it to be a channel that spans the membrane 11 times. Two structurally similar halves span the membrane with opposite polarity. Structures with and without ammonia or methyl ammonia show a vestibule that recruits NH4+/NH3, a binding site for NH4+, and a 20 angstrom-lon...

متن کامل

Functional analysis of human RhCG: comparison with E. coli ammonium transporter reveals similarities in the pore and differences in the vestibule.

Rh glycoproteins are members of the ammonium transporter (Amt)/methylamine permease (Mep)/Rh family facilitating movement of NH(3) across plasma membranes. Homology models constructed on the basis of the experimental structures of Escherichia coli AmtB and Nitrosomonas europaea Rh50 indicated a channel structure for human RhA (RhAG), RhB (RhBG), and RhC (RhCG) glycoproteins in which external an...

متن کامل

Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the Mep/Amt/Rh family and impact on filamentation.

Ammonium transport proteins of the Mep/Amt/Rh family include microbial and plant Mep/Amt members, crucial for ammonium scavenging, and animal Rhesus factors likely involved in ammonium disposal. Recent structural information on two bacterial Mep/Amt proteins has revealed the presence, in the hydrophobic conducting pore, of a pair of preserved histidines proposed to play an important role in sub...

متن کامل

Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification.

The proteins of the ammonium transporter/methylammonium permease/Rhesus factor family (AMT/MEP/Rh family) are responsible for the movement of ammonia or ammonium ions across the cell membrane. Although it has been established that the Rh proteins are distantly related to the other members of the family, the evolutionary history of the AMT/MEP/Rh family remains unclear. Here, we use phylogenetic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 10  شماره 

صفحات  -

تاریخ انتشار 2011